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Abstract: Many dry conifer forests in the southwestern USA and elsewhere historically (prior to the
late 1800’s) experienced fairly frequent surface fire at intervals ranging from roughly five to 30 years.
Due to more than 100 years of successful fire exclusion, however, many of these forests are now denser
and more homogenous, and therefore they have a greater probability of experiencing stand-replacing
fire compared to prior centuries. Consequently, there is keen interest in restoring such forests to
conditions that are conducive to low-severity fire. Yet, there have been no regional assessments
in the southwestern USA that have specifically evaluated those factors that promote low-severity
fire. Here, we defined low-severity fire using satellite imagery and evaluated the influence of
several variables that potentially drive such fire; these variables characterize live fuel, topography,
climate (30-year normals), and inter-annual climate variation. We found that live fuel and climate
variation (i.e., year-of-fire climate) were the main factors driving low-severity fire; fuel was ~2.4 times
more influential than climate variation. Low-severity fire was more likely in settings with lower
levels of fuel and in years that were wetter and cooler than average. Surprisingly, the influence of
topography and climatic normals was negligible. Our findings elucidate those conditions conducive
to low-severity fire and provide valuable information to land managers tasked with restoring forest
structures and processes in the southwestern USA and other regions dominated by dry forest types.
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1. Introduction

Wildland fire is an integral component of most dry conifer forest ecosystems in the southwestern
USA and elsewhere [1]. Analyses of fire scarred trees indicate that most dry conifer forests in the
southwest USA historically (i.e., prior to the late 19th century) experienced frequent surface fire and
less frequent mixed-severity fire at intervals ranging from roughly five to thirty years [2–4]. However,
as a result of fire exclusion policies that reduced fire frequency and area burned after the late 19th
century [5,6], many dry conifer forests in the southwestern USA are denser and more homogenous
compared to the pre-settlement era [7,8]. Consequently, there is growing concern that some dry forests
are at risk of burning at higher severities (i.e., stand-replacing) than occurred in past centuries [9,10].
Recent research suggests this is indeed the case [11–13].

Stand-replacing fire in dry conifer forests has caused substantial concern about enduring
conversions to non-forest. It is evident, for example, that the regeneration of dry conifer species
(e.g., ponderosa pine) becomes more limited with increasing fire severity, increasing distance to seed
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source, and at sites with drier biophysical characteristics [14–16]. Short-interval high-severity fire
(i.e., reburning at high-severity) in some dry forests also leads to post-fire successional trajectories
that substantially differ from the pre-fire conditions, raising additional concern about altered
successional trajectories and conversion to non-forest [17–19]. Although the drivers and consequences
of high-severity fire are being increasingly studied, little to no research has been conducted that
specifically focuses on the factors that promote low-severity fire, particularly in regions dominated
by dry conifer forest that historically experienced frequent surface fire. A better understanding of
those factors promoting low-severity fire could assist managers interested in reintroducing such fire
to dry conifer forests in the southwest USA and elsewhere. Furthermore, identifying factors that
promote low-severity fire could help identify biophysical settings in need of restoration treatments
(e.g., prescribed fire and mechanical thinning) that will increase the likelihood of surface fire, thereby
lowering the likelihood of stand-replacing fire and potential fire-facilitated conversions to non-forest.

Indeed, many dry conifer forests in the southwestern USA are in need of restoration in order to
increase their resilience (i.e., reduce the probability of stand-replacing fire and associated transition to
non-forest) [20,21]. Restoration treatments usually refer to mechanical thinning and prescribed fire [22],
but it has been pointed out that the pace and scale of such treatments are inadequate in addressing the
large area in need of restoration due to logistical, legal, and physical (i.e., topography) constraints [23].
However paradoxical it may seem, wildland fire itself has also been espoused as an effective method
for increasing the resilience of dry conifer forests [24,25]. Reintroducing stand-replacing fire is
obviously counterproductive for dry conifer forests, and consequently, Allen et al. [26] recommend,
among other restoration treatments, the reintroduction of low-severity fire in such forests. This said,
uncertainty about the biophysical settings in which low-severity fire is probable, and under what
weather conditions, likely precludes the reintroduction of such fire in most cases (cf. [27]). This is
a substantial knowledge gap given that low-severity fire was common in such forests prior to European
settlement and the growing interest in restoring surface fire to dry conifer forests. Excluding studies
involving fire refugia, which focus on unburned or low-severity patches within a matrix of moderate-
to high-severity fire [28,29], little-to-no research has been conducted that specifically focuses on the
drivers of low-severity fire in dry conifer forests such as those found in the southwestern USA.

The overarching goal of our study was to identify the most important factors driving low-severity
fire in the southwestern USA. We measured fire severity using a satellite-inferred metric of fire-induced
change, the relativized burn ratio [30]. We evaluated the relative influence of several factors driving
low-severity fire including live fuel, topography, climate (30-year normals), and inter-annual climate
variation (i.e., year-of-fire climate). We were also interested in functional relationships between
important variables and low-severity fire, thereby providing managers with information pertaining
to the biophysical and year-of-fire climatic conditions that promote low-severity fire. Consequently,
our results will be highly relevant and timely to land managers interested in restoring fire regimes in
the southwestern USA and other regions dominated by dry conifer forest.

2. Materials and Methods

2.1. Study Area

We conducted our study in the southwestern USA because of the high prevalence of dry conifer
forest and the historical dominance of frequent, low-severity fire [31]. Specifically, we focused on
the Arizona—New Mexico ecoregion (plus a 10-km buffer; 150,747 km2) as defined by The Nature
Conservancy [32] (Figure 1). Elevation ranges from 1053 to 3756 m (mean across ecoregion = 1986 m).
The ecoregion is climatically diverse; mean annual temperature ranges from 0.5 to 17.2 ◦C
(mean = 11.1 ◦C) and mean annual precipitation from 16.7 to 121.1 cm/year (mean = 40.6 cm/year) [33].
Almost half (48%) of the precipitation occurs in the summer (July–September) due to monsoonal
storms [34]. The vegetation is also diverse; dominant forest types include pinyon-juniper woodland
(22.4% of study area) and ponderosa pine woodland and savannah (12.7%) [31]. Other forest
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types such as mixed conifer, spruce-fir, and conifer-oak represent a fairly small proportion of the
study area. Our study does not include non-forested vegetation (see below) and is therefore not
described here. The proportional coverage of vegetation communities within the burned areas can
be characterized as follows: ponderosa pine = 52%, pine-oak types = 20% (includes Arizona pine,
alligator juniper, and Emory oak), mixed-conifer types = 15% (includes Douglas fir and white fir),
subalpine types = 5% (includes Engelmann spruce and subalpine fir), riparian = 5% (includes black
cottonwood), and pinyon-juniper = 4% [31]. The fire season runs from early May through late-August
(USDA Forest Service 2013), although fires are less likely after early July due to rains associated with
monsoonal storms from the Gulf of Mexico [35,36]. Fires in this region were generally characterized as
occurring frequently and at a low-severity prior to European settlement, although it is recognized that
fire severity varies with elevation and topography [5,37]. Extensive cattle and sheep grazing began in
the 1880s, which substantially reduced fine fuel amount and continuity and caused a decrease in fire
frequency [38]. Continued fire exclusion via direct fire suppression has contributed to increases in tree
density and shade-tolerant species, thereby heightening concern about uncharacteristically severe fire
and altered post-fire successional trajectories [20,39,40].

Figure 1. Study area map shows the distribution of forest, non-forest, and fire in our study area
(the Arizona-New Mexico Mountains ecoregion). Inset shows this ecoregion’s location in the context of
the contiguous USA.

2.2. Data

Fire severity was measured using the relativized burn ratio (RBR), an index (resolution: 30-m)
that quantifies the difference between pre- and post-fire Landsat thematic mapper (TM), enhanced
thematic mapper plus (ETM+), and operational land imager (OLI) satellite data. The RBR has
a high correspondence to field-based measures of severity such as the composite burn index
(CBI; r2 = 0.71) [30]. We classified the RBR data into binary categories representing low-severity
(RBR ≤ 116) and other severity (RBR > 116) (Figure 2b). The RBR = 116 value corresponds to the
average threshold between low and moderate severity for the nine fires analyzed in the southwestern
USA by Parks et al. [30]; a similar thresholding approach was used by Dillon et al. [41] in their analysis
involving high-severity fire. Satellite imagery used to generate RBR was obtained from the Monitoring
Trends in Burn Severity program (MTBS) [42], which distributes fire and satellite data for fires ≥400 ha
for the years 1984–2015. RBR was calculated using the ‘dNBR offset’, which accounts for differences
due to phenology or precipitation between the pre- and post-fire imagery by subtracting the average
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delta normalized burn ratio (dNBR) of pixels outside the burn perimeter [43]; this can be important
when comparing severity among fires [30].

We evaluated 13 explanatory variables in describing low-severity fire that can be categorized into
four groups characterizing live fuel, topography, climate (30-year normals), and inter-annual climate
variation (i.e., year-of-fire climate) (Table 1). The fuel group is comprised of three vegetation indices
derived from satellite data: NDVI, NDMI, and EVI (Table 1) (resolution = 30-m). These indices were
generated using pre-fire imagery distributed by MTBS. NDVI is an index of vegetation productivity and
biomass [44]. NDMI is a measure of vegetation moisture and is frequently used in drought monitoring,
and because of its sensitivity, it is also key in assessing wildfire potential and severity [45,46]. EVI is
an alternative index of vegetation productivity, but, whereas NDVI is chlorophyll sensitive, EVI is
more responsive to canopy structural variations (i.e., leaf area index, canopy type, plant physiognomy,
and canopy architecture) [47] (Figure 2).

Table 1. Variables evaluated as predictors in modeling the probability of low-severity fire in forests of
the southwestern USA.

Group Variable Name Description Source

Live fuel

NDVI

Normalized differenced vegetation index.
Calculated using pre-fire imagery distributed
by the Monitoring Trends in Burn Severity
(MTBS) program [41].

Pettorelli et al. [44]

NDMI
Normalized differenced moisture index.
Calculated using pre-fire imagery distributed
by MTBS [41].

McDonald et al. [46]

EVI Enhanced vegetation index. Calculated using
pre-fire imagery distributed by MTBS [41]. Huete [47]

Topography

DISS Dissection index with a 450 m radius. DISS is
a measure of topographic complexity. Evans [48]

TPI

Topographic position index. TPI is a measure
of valley bottom vs. ridge top and measures
the elevational difference (meters) between
each pixel and an annulus with
a 2000-m radius.

NA

SRAD Potential solar radiation, as calculated using
the SOLPET6 model. Flint et al. [49]

Slope Slope angle NA

Climate

CMD Climatic moisture deficit [49]. Mean over the
1981–2010 time period.

Wang et al. [50];
https://adaptwest.
databasin.org/

ET Evapotranspiration (i.e., Eref-CMD).
Mean over the 1981–2010 time period.

MAT Mean annual temperature. Mean over the
1981–2010 time period.

Inter-annual climate
variation

Temp.z Mean June temperature for the year in which
the fire occurred. Converted to a z-score.

ClimateNA software
package; Wang et al. [50]

ET.z
Mean June evapotranspiration for the year in
which the fire occurred. Converted to
a z-score.

CMD.z
Mean June climatic moisture deficit for the
year in which the fire occurred. Converted to
a z-score.

https://adaptwest.databasin.org/
https://adaptwest.databasin.org/
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Figure 2. Example shows one of the >400 fires evaluated. Location of the 2011 Miller fire within the
study area (a). Fire severity for the 2011 Miller Fire (b). Examples of the variables we used to represent
pre-fire fuel (c,d), topography (e,f), and climate (g,h) for the 2011 Miller Fire. Inter-annual climate
variation is not shown here because such variables are more indicative of temporal variability as
opposed to spatial variability for individual fires. EVI: enhanced vegetation index; NDMI: normalized
differenced moisture index; TPI: topographic position index; SRAD: solar radiation; CMD: climatic
moisture deficit; MAT: mean annual temperature.

Climate is represented by three variables (resolution = 1-km): climatic moisture deficit (CMD),
reference evapotranspiration minus CMD, hereafter referred to as evapotranspiration (ET), and mean
annual temperature (MAT) [50] (Table 1; Figure 2). These variables characterize spatial variability and
represent climate normals over the 1981–2010 time period (they do not vary annually) and have been
identified as predictors of wildland fire in several studies [51–53].

Inter-annual climate variation is represented by three ‘year-of-fire’ variables: Temp.z, CMD.z,
and ET.z (Table 1). These variables represent the z-scores for the month of June in the year in which
each fire burned; June experiences the highest fire activity on average in the southwestern USA [54].
As such, Temp.z represents mean temperature for the month of June in the year in which the fire
burned. CMD.z represents climatic moisture deficit and ET.z represents evapotranspiration for the
month of June in the year in which the fire burned. These variables (resolution = 1-km) were generated
using the ClimateNA software package (version 5.10) [50]. Recent studies have used similar variables
representing climate variation in evaluations of fire severity [55,56]. All variables representing climate
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variation were converted to z-scores using the per-pixel mean and standard deviation for the month of
June over a 30-year time period (1986–2015). Z-scores therefore represent the value in the month of
June in terms of standard deviations away from the June mean.

2.3. Sampling Design and Statistical Model

We sampled fires that occurred from 1984–2015. We only sampled pixels identified as forest
(i.e., forest, woodland, and savanna), as defined by a combination of landscape level vegetation
products that include Landfire’s [31] Existing Vegetation Cover (EVC), Environmental Site Potential
(ESP), and the Landsat Time Series Stacks–Vegetation Change Tracker (LTSS-VCT) [57]. From the
full set of burned forested pixels, we generated an initial 5% random sample, but then removed all
pixels <100 m from the fire perimeter to reduce edge effects common at fire boundaries [58]. Although
predictor variables ranged in resolution from 30-m to 1-km, all extractions were conducted using the
native resolution of the response variable (30-m).

We produced a logistic regression model (family = binomial) describing low-severity fire (binary
response) as a function of the 13 variables representing live fuel, topography, climate, and inter-annual
climate variation (Table 1). We used a five-fold cross-validated procedure in which 80% of the fires
(not the samples/pixels) were used to build a model and the remaining 20% of the fires were used
to test the model; this ensures our cross-validation was spatially and temporally structured and that
our model validation and inferences are not a result of autocorrelation common in satellite-inferred
severity data [58–60]. For each of the five folds, we calculated the area under curve (AUC) statistic
derived from the receiver operating characteristic curve of the full model (includes all 13 explanatory
variables). We then compared this AUC to the AUC of additional models in which each variable was
excluded. The AUC using the test data was averaged over the five folds. If the cross-validated AUC
increased when a variable was removed, it was an indication that the variable did not provide unique
information that improved model fit. As such, we removed the variable that resulted in the largest
AUC increase when it was removed from the model. We then repeated this procedure until all variables
resulted in a decrease in the cross-validated AUC when they were individually removed from the
model. All statistical analyses were conducted using the R statistical program [61]. The cross-validation
and stepwise variable selection procedures follow that of Parks et al. [62].

The cross-validated stepwise procedure we employed has some advantages compared to
approaches that do not hold out independent data. For example, this procedure reduces the possibility
of model overfitting and avoids falsely inflating our model skill (i.e., AUC statistic). Because our test
data are independent—data from fires used to build the model (i.e., training data) were not used for
model validation and variable selection (i.e., testing data)—our models are spatially and temporally
transferable. Variables are retained based solely on whether or not they improve model fit; even if
retained variables are correlated, they still possess unique information that improves the model.

Once the final set of variables was identified using the procedure described above, we calculated
the relative influence of each variable group (fuel, topography, climate, and climate variation). This was
achieved using a five-fold cross validation while excluding each group of variables. Specifically,
we compared the five-fold cross validated AUC of the final model to models that excluded variables
characterizing fuel, topography, climate, and inter-annual climate variation. Small decreases in AUC
(compared to the final model) for any particular variable group are interpreted as having little influence,
whereas sizeable decreases in AUC are interpreted as having large influence. The specific equation is
as follows:

Relative in f luencei =
AUC. f ull − AUC.no.vari

∑i=4
i=1 (AUC. f ull − AUC.no.vari)

× 100

where AUC.full is the AUC of the full model, AUC.no.vari is the AUC of the model excluding any
particular variable group, and i represents one of the variable groups.
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We produced response curves describing the probability of low-severity fire as a function of
all variables retained in the final model. To do so, we built individual logistic regression models
(family = binomial) for each variable and plotted the response curves.

3. Results

We included data from over 400 fires that burned over 12,000 km2 of forest to inform our model
describing the probability of low-severity fire. The spatially and temporally cross-validated AUC was
0.701. Live fuel was the most influential factor driving low-severity fire (relative influence = 70.0%).
This was followed by inter-annual climate variation (relative influence = 28.6%). The influence of
topography and climate was negligible (0.9% and 0.5%, respectively). Our final model included eight
variables that remained after the cross-validated stepwise procedure: EVI, NDMI, TPI, SRAD, ET,
TEMP.z, ET.z, and CMD.z.

The response curves show a negative relationship between low-severity fire and both measures of
fuel; that is, the probability of low-severity fire decreases with increasing fuel (Figure 3). Low-severity
fire has a negative relationship with both Temp.z and CMD.z, so low-severity fire is more likely in years
in which the June temperature and climatic moisture deficit are lower than average (i.e., z-scores < 0)
compared to higher than average (z-score > 0). Finally, the relationship between low-severity fire and
ET.z is positive, meaning the probability of low-severity fire increased with June evapotranspiration.
We do not show the functional relationships with SRAD, TPI, and ET because the relative influence of
these variables is less than 1% each.

Figure 3. Functional relationships depict the probability of low-severity fire as a function of live fuels
and inter-annual climate variation. Each of these was produced with a logistic regression with only the
variable of interest. EVI: enhanced vegetation index; NDMI: normalized differenced moisture index;
Temp.z: temperature z-score; ET.z: evapotranspiration z-score; CMD.z: climatic moisture deficit z-score.
Functional relationships for TPI, SRAD, and ET are not shown since the relative influence of these
variables is less than 1%.

4. Discussion

Our study pertains to those factors responsible for low-severity fire, thereby providing a different
lens with which to view fire compared to the numerous studies that focus on the drivers and
distribution of high-severity fire [37,41,56,62–64]. Specifically, because our study identifies the drivers
of, and their relationship to, low-severity fire, we fill a critical information gap for dry forested regions
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in which prescribed fire and wildland fire managed for resource benefit are often espoused as forest
restoration strategies [26,65,66]. This contrasts from those evaluations of high-severity fire, which often
underscore the legitimate negative ecological and social impacts of such fire including the potential for
altered successional trajectories and conversion to non-forest, particularly in dry forested ecosystems
such as those found in the southwestern USA and elsewhere [17,39,67].

It is not entirely clear whether the factors that control low-severity fire can be inferred from
studies of high-severity fire. Consequently, we suggest that our explicit attention to low-severity
fire avoids ambiguity and potential misinterpretations that could arise from making inferences from
high-severity fire studies. This is particularly important given that we focused on forests of the
southwestern USA that historically experienced frequent surface fire prior to the late 19th century [4,5].
Moreover, our evaluation included four main drivers of low-severity fire (live fuel, topography, climate,
and inter-annual climate variation), whereas most fire severity studies to date have included only
one to three of these factors (e.g., [41,51,68]) (but see Parks et al. [62]). Lastly, many evaluations of
high-severity fire included a limited number of fires (e.g., [51,69,70]), which potentially prevents
generalizing their findings over broader regions; in contrast, our study included data from over
400 fires.

Live fuel was by far the most important variable group promoting low-severity fire (relative
influence = 70.0%); Parks et al. [62] also found that fuel was most important in their evaluation of
high-severity fire in the western USA. Other studies that used proxies for fuel (e.g., vegetation type
or canopy cover) have also highlighted the influence of this factor in driving fire severity [71,72].
Moreover, we show that the probability of low-severity fire increased with decreasing levels of live
fuel, as represented by EVI and NDMI (Figure 3). This result supports the findings of numerous
studies based on field data [40,73], fire simulation modelling [74,75], and satellite-inferred severity
metrics [59,76,77] that showed a reduction in fuel resulted in lower severity fire.

Year-of-fire climate (i.e., inter-annual climate variation) was the second most important variable
group driving low-severity fire (relative influence = 28.6%). Keyser and Westerling [56], in their
evaluation of high-severity fire, also highlighted the importance of climate variation. Importantly,
our finding that the probability of low-severity fire increased with decreasing year-of-fire temperature
and climatic moisture deficit is consistent with the findings of Abatzoglou et al. [55], who found
a positive correlation between fire severity and year-of-fire fuel aridity. We find it notable that the
climate metrics we used (departures from the mean value for the month of June, which are at a fairly
coarse temporal resolution) exhibited a rather high relative influence. This suggests that near-term
wildland fire forecasts, which currently address only area burned or number of large fires based on
expected weather and other factors [78,79], could potentially forecast fire severity, thereby providing
fire managers and others with a more complete prediction of the upcoming fire season.

Surprisingly, topography and climate (30-year normals representing spatial variability) had
a negligible influence on the prevalence of low-severity fire (relative influence = 0.9% and 0.5%,
respectively). This contrasts with a multitude of studies that showed topography is moderately to
highly important in controlling fire severity (e.g., [41,51,68,72,80]). Likewise, recent studies conducted
at scales ranging from individual fires to numerous fires across large regions have concluded that
climate is related to fire severity [51,52,81]. We posit here, similar to Parks et al. [62], that topography
and climate are indirect measures of fuel, and because we explicitly include fuel in our model,
topography and climate are regarded as inconsequential. Indeed, Dillon et al. [41] acknowledged that
topography was likely serving as a proxy for variation in fuel and other factors that were not accounted
for in their study. Regardless, it is worth noting that Parks et al. [62], who evaluated high-severity fire,
found substantial ecoregional variation in terms of the relative influence of topography and climate,
suggesting that the findings presented here might not be generalizable to other regions.

The results of our study can be considered in relation to the growing body of literature pertaining
to fire refugia [82–85]. Most fire refugia studies involve the study of unburned or low-severity
remnants within a matrix of high-severity effects (e.g., [86]) or are focused on regions that are inherently
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characterized by mixed-severity and stand-replacing fire regimes (e.g., [87]). For the most part, these
studies have not investigated those factors that create or promote the creation of fire refugia, but have
instead focused on characterizing their prevalence and spatial patterns. This said, a limited number of
studies have evaluated the factors promoting the creation of fire refugia; they found that topography
and fire weather were important drivers [28,29]. Nevertheless, we suggest more research is needed
to gain a better understanding of the factors that promote the creation of fire refugia and promote
low-severity fire in general.

Producing statistical models of low-severity fire (or any severity fire) is challenging for several
reasons. Remotely sensed metrics of fire severity are imperfect estimates of complex processes [88].
Nonetheless, such metrics are arguably the most consistent and appropriate for describing and
analyzing fire severity over large landscapes and across multi-decadal timeframes. Furthermore,
we used satellite indices to characterize fuel, but this approach generally describes live overstory
vegetation and does not account for sub-canopy live and dead surface fuels that influence fire
severity [89]. However, adequately characterizing live and dead sub-canopy fuel over large landscapes
is difficult, if not impossible. Also, we used climate departures from the month with the highest
average fire activity (June) to broadly characterize weather conditions conducive to fire. Fire severity,
however, is known to vary with daily to hourly fluctuations in weather conditions [62,69]. Future
investigations of low-severity fire could employ satellite fire detection data to infer the day that
each pixel burned [90,91] and incorporate daily fire weather into their models (cf. [28,92]). Lastly,
all else being equal, fire behavior and effects are different depending on the direction of fire spread
(e.g., heading vs. flanking fire) [93], and at this time, we cannot capture this directional effect in
our models.

5. Conclusions

Our study elucidates those conditions conducive to low-severity fire. Fuel and inter-annual
climate variation (i.e., year-of-fire climate) were the dominant factors controlling the prevalence of
low-severity fire, although the relative influence of fuel was ~2.4 times greater than that of climate
variation. The probability of low-severity fire increased at lower levels of fuels and in years that were
cooler and wetter than average. The influence of topography and climate (30-year normals representing
a spatial gradient) was negligible. These findings support the notion that fuel treatments will likely
increase the probability of low-severity fire [40,73,94]. Nevertheless, the influence inter-annual climate
variation should not be discounted. Low-severity fire was more prevalent in cooler and wetter fire
seasons (than average), which provides rationale for allowing more fires to burn (i.e., less aggressive
fire suppression) in non-extreme years. These wildland fires are efficient means to reduce fuel
loads, which has important consequences given that fuels are the prominent driver of high-severity
fire [62]. Put another way, promoting low-severity fire in non-extreme years will reduce fuel loads and
potentially decrease the probability of high-severity in fire extreme years.

It is recognized that low-severity fire consumes ladder and surface fuels [95,96] and reduces
the prevalence of shade-tolerant trees in many cases [97]. These changes to fuels and the structure
and composition of vegetation have important implications in terms of the behavior and effects of
subsequent fires [17,19]. For example, a recent study concluded that sites with a restored fire regime
were more likely to retain conifer trees and less likely to convert to non-forest during a subsequent
extreme fire event [40]. Moreover, low-severity fire often reinforces a pattern of low-severity fire
in subsequent fire events [18,59,98]. Other beneficial aspects of low-severity fire are also evident.
For example, low-severity fire increases the ability of trees to defend against bark beetle attacks [99].
These examples illustrate that low-severity fire increases resilience to subsequent abiotic and biotic
disturbance events and that managers could consider taking active measures to promote low-severity
fire in regions dominated by dry conifer forest. Our findings provide land managers with general
principles for promoting low-severity fire. As such, our study is both timely and relevant given the
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increasing desire to allow fire to burn to achieve restoration objectives [25,26,66] and the desire to
avoid stand-replacing fire in dry forests in the southwestern USA [39,100].
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